

Calculation Policy

At Luddenden CE, we follow a mastery approach in maths. Concepts and calculations begin with concrete manipulatives so children build good understanding of concepts, not just processes and algorithms. When this stage is secure, pictorial representations model the concept before moving on to abstract representations and formal algorithms.

When setting tasks or phrasing questions, problems will be asked in a variety of ways. Examples are given in the, 'conceptual variations', but these in no way represent an exhaustive list. Children will be encouraged to apply what they have learnt in different ways to deepen understanding and develop resilience to unfamiliar situations.

We recognise that bigger numbers or more digits do not necessarily make questions harder, so numbers in questions are chosen carefully, including zero, to increase in complexity rather than simply scale. For example, 1230 + 1126 is a much simpler calculation than 389 + 934 due to exchanging.

Children are encouraged to use correct mathematical language so they are able to discuss their ideas properly and explain their understanding accurately.

This document is separated by operation and year group, however, some children may need to recap from previous years, or a teacher may start a unit of work by recapping the previous year's techniques and concepts, so the year group assigned to a method or concept should not be taken as a rigid rule.

Conceptual Variation

When setting tasks or phrasing questions, problems will be asked in a variety of ways. Children will be encouraged to apply what they have learnt in different ways to develop resilience to unfamiliar situations.

Below is just a sample of ways questions could be phrase or displayed. Teachers will present questions and problems in a broad variety of ways and contexts.

Addition:

Subtraction:

Conceptual variation	on; different ways to	o ask children t	o solve 391 - 186
391	Raj spent £391, Timmy spent £186. How much more did Raj spend?	= 391 - 186	Missing digit calculations
? 185	Calculate the difference between 391 and 186.	<u>-186</u>	- 6
391 186 ?		What is 186 less than 391?	0 5

Multiplication:

Division:

Addition:

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2
Regrouping to make 10; using ten frames and counters/cubes or using Numicon. 6 + 5	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$

Subtraction:

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 - 3 = 1	XXXX	4 3 ? 4 ? 3
Counting back (using number lines or number tracks) children start with 6 and count back 2.	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children
6 - 2 = 4		to use an empty number line
	12345678910	012345678910
		46

Subtraction:

(continued)

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 – 5, the difference is
$ \begin{array}{c} \hline \\ \hline $	5 	Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference.
Making 10 using ten frames. 14 – 5	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend.
$\begin{array}{c} -4 \\ -1 \\ \hline $		$ \begin{array}{c} 14 - 5 = 9 \\ 4 & 1 \\ 14 - 4 = 10 \\ 10 - 1 = 9 \end{array} $

Multiplication:

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4	Children to represent the practical resources in a picture and use a bar model.	$3 \times 4 = 12$ 4 + 4 + 4 = 12
There are 3 equal groups, with 4 in each group.	88 88 88	
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four.
Cuisenaire rods can be used too.	1000010000100001 4 8 12	3×4=12

Year 1 - Division:

Key Language: Share, group, divide, divided by, half

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ± 2	Represent the sharing pictorially.	6 ÷ 2 = 3
		3 3 Children should also be encouraged to use their 2 times tables facts
	?	
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-Z -2 -2 0 1 2 3 4 5 6 3 groups
3 groups of 2		

Addition:

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Subtraction: (Formal algorithm at GDS)

Multiplication:

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group. ()	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$
Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5

Division:

Key Language: Share, group, divide, divided by, half

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ± 2	Represent the sharing pictorially.	6 ÷ 2 = 3
	\odot \odot	3 3
		Children should also be encouraged to use their 2 times tables facts.
	?	
Repeated subtraction using Cuisenaire rods above a ruler. 6 ÷ 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-Z -2 -2 0 1 2 3 4 5 6 3 groups
3 groups of 2		

Addition: Introduce exchanges. 3d + 3d

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Year 3

Subtraction:

Multiplication: (x2,3,4,5,8,10)

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ $2 + 2 + 2 + 2 + 2 = 10$ $10 = 5 + 5$
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ $40 \cdot 20 = 60$ A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $\land 3 \times 3 = 9$ 20 3 $60 + 9 = 6923\times 369$
Formal column method with place value counters. 6 x 23 100s 10s 1s 000 000 000 000 0000 000 000 0000 000 000 000 000 00000 0000 0000 0000	Children to represent the counters/base 10, pictorially e.g. the image below.	Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ 1 1

Division: (+2,3,4,5,8,10)

Key Language: Share, group, divide, divided by, half

Addition: up to 4d to include decimals

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Year 4

Subtraction: 4d – 4d including 2dp

Multiplication: (all times-tables) 4d x 1d

Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 10 5 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 20 = 60
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially. 10s Is 00 000 00 000 00 000 6 9	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $/ 3 \times 3 = 9$ 20 3 $60 + 9 = 6923\frac{\times 3}{69}$
Formal column method with place value counters. 6 x 23 100s 10s 1s 100s 10s 1s 100s 10s 1s 000 000 000 00000 000 000 000 000 0000 000 000 000 0000 0000 0000 0000 00000 0000 00	Children to represent the counters/base 10, pictorially e.g. the image below.	Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ 1 1

Division: (all divisors) 4d÷1d incl remainders

Key Language: Share, group, divide, divided by, half

Short division using place value counters to group. 615 \div 5

- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Children to the calculation using the short division scaffold.

Addition: Up to 4 or more digits and decimals to 3dp

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Year 5

Subtraction: 4d – 4d inc 3dp

Multiplication: (all times tables) 4d x 2d

When children start to multiply 3d × 3d and 4d × 2d etc., they should be confident with the abstract:	1 2 4 × 2 5
To get 744 children have solved 6×124 . To get 2480 they have solved 20×124 .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Answer: 3224

Key Language: Double, times, multiplied by, the product of, groups of, lots of, equal groups

Year 5

Division:

Key Language: Share, group, divide, divided by, half

Addition: Any number of digits including decimals to 3dp

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Year 6

Subtraction: Any number of digits including decimals to 3dp

Multiplication: (all times tables) 4d x 2d

When children start to multiply $3d \times 3d$ and $4d \times 2d$ etc., they should be confident with the abstract:	1 2 4
	× 26
To get 744 children have solved 6×124 .	_7 4 4
To get 2480 they have solved 20×124	2 - 4 8 0
	3 2 2 4
	1 1
	Apswer: 3224
	Allswel, 5224

Division:

Key Language: Share, group, divide, divided by, half

Short division using place value counters to group. 615 ÷ 5

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters $2544 \div 12$

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

Represent the place value counters pictorially.

12 2544 24 Children to the calculation using the short division scaffold.

