Calculation Policy

At Luddenden CE, we follow a mastery approach in maths. Concepts and calculations begin with concrete manipulatives so children build good understanding of concepts, not just processes and algorithms. When this stage is secure, pictorial representations model the concept before moving on to abstract representations and formal algorithms.

When setting tasks or phrasing questions, problems will be asked in a variety of ways. Examples are given in the, 'conceptual variations', but these in no way represent an exhaustive list. Children will be encouraged to apply what they have learnt in different ways to deepen understanding and develop resilience to unfamiliar situations.

We recognise that bigger numbers or more digits do not necessarily make questions harder, so numbers in questions are chosen carefully, including zero, to increase in complexity rather than simply scale. For example, $1230+1126$ is a much simpler calculation than $389+934$ due to exchanging.

Children are encouraged to use correct mathematical language so they are able to discuss their ideas properly and explain their understanding accurately.

This document is separated by operation and year group, however, some children may need to recap from previous years, or a teacher may start a unit of work by recapping the previous year's techniques and concepts, so the year group assigned to a method or concept should not be taken as a rigid rule.

Conceptual Variation

When setting tasks or phrasing questions, problems will be asked in a variety of ways. Children will be encouraged to apply what they have learnt in different ways to develop resilience to unfamiliar situations.

Below is just a sample of ways questions could be phrase or displayed. Teachers will present questions and problems in a broad variety of ways and contexts.

Addition:

Conceptual variation; different ways to ask children to solve $21+34$

Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?	$\begin{array}{r} 21 \\ +34 \\ \hline \end{array}$		
$21+34=55$. Prove it	$21+34=$ $=21+34$	Missing digit p	oblems:
		10s	15
	Calculate the sum of twenty-one	(-)	(1)
	and thirty-four.	(-) $)^{\circ}$?
		?	5

Subtraction:

Conceptual variation; different ways to ask children to solve 391-186

Raj spent $£ 391$, Timmy spent $£ 186$.
How much more did Raj spend? 186.

-186	
391	Missing digit calculations
What is 186 less than 391?	

Multiplication:

Conceptual variation; different ways to ask children to solve 6×23

23	23	23	23	23	23
$?$					

Mai had to swim 23 lengths, 6 times a week.	Find the product of 6 and 23$\begin{aligned} & 6 \times 23= \\ & 5=6 \times 23 \end{aligned}$	What is the calculation? What is the product?		
How many lengths did she swim in one week?		100s	10s	1s
With the counters, prove that 6×23 $=138$	$\begin{array}{r} 63 \\ \times \quad 23 \\ \hline \end{array}$		$\begin{aligned} & \hline 88 \\ & 88 \\ & 88 \\ & 88 \\ & 08 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 000 \\ & 000 \\ & 900 \\ & 008 \\ & 000 \\ & 000 \end{aligned}$

Division:

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how
can you divide 615 by 5 without using short division?

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?
$5 \longdiv { 6 1 5 }$
$615 \div 5=$
[]= $=615 \div 5$

What is the calculation?
What is the answer?

100s	10s	1s
	pooe	$\begin{array}{\|l\|} \hline 00000 \\ 00000 \\ 00000 \end{array}$

Year 1

Addition:

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$
Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Year 1

Subtraction:

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Concrete

Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).
$4-3=1$

Counting back (using number lines or number tracks) children start with 6 and count back 2.
$6-2=4$

Pictorial
Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.

Q Q囚O

Children to represent what they see pictorially e.g.

$012 / 3 / 45 / 56778910$

Abstract
4-3 =
[न=4-3

4	
3	$?$

Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

Year 1

Subtraction:

(continued)

Year 1

Multiplication:

Key Language: Double, times, multiplied by, the product of, groups of, lots of, equal groups

Year 1 - Division:

Key Language: Share, group, divide, divided by, half

Year 2

Addition:

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Year 2

Subtraction: (Formal algorithm at GDS)

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Year 2

Multiplication:

Key Language: Double, times, multiplied by, the product of, groups of, lots of, equal groups

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Number lines to show repeated groups3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$
Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Year 2

Division:

Key Language: Share, group, divide, divided by, half

Concrete	Pictorial	Abstract
Sharing using a range of objects. $6 \div 2$	Represent the sharing pictorially.	$6 \div 2=3$ Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.
3 groups of 2		

Year 3

Addition: Introduce exchanges. 3d + 3d

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.
Use of place value counters to add HTO + TO, HTO +
HTO etc. When there are 10 ones in the 1 s column- we
exchange for 1 ten, when there are 10 tens in the 10 s
column- we exchange for 1 hundred.

Year 3

Subtraction:

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Year 3

Multiplication: ($\mathbf{x}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{8}, \mathbf{1 0}$)

Key Language: Double, times, multiplied by, the product of, groups of, lots of, equal groups

Year 3

Division: ($\div 2,3,4,5,8,10)$

Key Language: Share, group, divide, divided by, half

Year 4

Addition: up to 4d to include decimals

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Subtraction: 4d - 4d including 2dp

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Children to represent the base 10 pictorially.

Column method or children could count back 7 .

Year 4

Multiplication: (all times-tables) 4d x 1d

Key Language: Double, times, multiplied by, the product of, groups of, lots of, equal groups

Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. A number line can also be used
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. $\left.\begin{array}{\|cc} 3 \times 23 & 3 \times 20=60 \\ / \backslash & 3 \times 3=9 \\ 20 & 3 \end{array}\right) 60+9=69$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \end{array}$
Formal column method with place value counters. 6×23	Children to represent the counters/base 10, pictorially e.g. the image below.	Formal written method $\begin{array}{r} 6 \times 23= \\ 23 \\ \times \quad 6 \\ \hline \frac{138}{11} \end{array}$

Year 4

Division: (all divisors) 4d $\div 1 \mathrm{~d}$ incl remainders

Key Language: Share, group, divide, divided by, half

Short division using place value counters to group. $615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.
Children to the calculation using the short division scaffold.
$5 \longdiv { 6 _ { 6 } 1 ^ { \prime } 5 }$

Year 5

Addition: Up to 4 or more digits and decimals to 3dp

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Subtraction: 4d - 4d inc 3dp

Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Year 5

Multiplication: (all times tables) 4d x 2d

When children start to multiply $3 \mathrm{~d} \times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract:	$\begin{array}{r} 124 \\ \times \quad 26 \end{array}$
To get 744 children have solved 6×124.	7 4 4 1 2
To get 2480 they have solved 20×124.	24880 $\boldsymbol{4} 2$ 1
	$\begin{array}{lllll} \hline 3 & 2 & 2 & 4 \\ \hline & 1 & & \end{array}$
	Answer: 3224

Key Language: Double, times, multiplied by, the product of, groups of, lots of, equal groups Year 5

Division:

Key Language: Share, group, divide, divided by, half

Short division using place value counters to group. $615 \div 5$	Represent the place value counters pictorially.	Children to the calculation using the short division scaffold.
100s 10 s (s		
		$5 \longdiv { 5 \angle 3 }$
$\begin{array}{lll}1 & 2 & 3\end{array}$		
1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6 . How many groups of 5 ones can you make with 15 ones?		

Year 6

Addition: Any number of digits including decimals to 3dp

Key Language: Sum, total, parts and whole, plus, add, altogether, more, 'is equal to', 'is the same as'.

Subtraction: Any number of digits including decimals to 3dp
Key Language: Take away, less than, the difference, subtract, minus, fewer, decrease

Children to represent the base 10 pictorially.

Column method or children could count back 7 .

Year 6

Multiplication: (all times tables) 4d x 2d
Key Language: Double, times, multiplied by, the product of, groups of, lots of, equal groups

When children start to multiply $3 \mathrm{~d} \times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract:	$\begin{array}{r} 124 \\ \times \quad 26 \end{array}$
To get 744 children have solved 6×124.	$\begin{array}{c\|cc} -7 & 4 & 4 \end{array}$
To get 2480 they have solved 20×124.	$\begin{array}{llll}2-4 & 8 & 0\end{array}$
	$\begin{array}{llll} \mathbf{3} & \mathbf{2} & \mathbf{2} & \mathbf{4} \\ \hline 1 & 1 & & \end{array}$
	Answer: 3224

Year 6

Division:

Key Language: Share, group, divide, divided by, half

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	1 s
\bigcirc	0^{000}	0000	0000
1000s	100s	10s	1 s
		0000	णலరం

We can't group 2 thousands into groups of 12 so will exchange them.
$\begin{array}{lc}\text { We can group } 24 \text { hundreds } \\ \text { into groups of } 12 \text { which leaves } & 1 2 \longdiv { 2 5 } / \begin{array} { l l } { 2 4 4 } \\ { \hline } \end{array}\end{array}$
with 1 hundred.
$\begin{array}{r}24 \\ \hline 1\end{array}$

